skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Li, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fabricating polymeric membranes with ion-specific selectivity has been targeted in recent years to address the growing challenges of water and resource scarcity. Inspired by discoveries of the selectivity mechanisms in biological channels, ion dehydration has been increasingly recognized as a key phenomenon governing the transport and selectivity in dense polymeric membranes and other synthetic nanochannels. However, understanding the molecular details of this phenomenon and leveraging and controlling it to increase the selectivity between ions in state-ofthe-art membranes remain elusive. In this Perspective, we discuss the foundations of ion dehydration and explore opportunities to study and leverage this phenomenon for improving ion−ion selectivity in membranes. We first introduce the fundamentals and measurements of ion’s hydration properties in solution, distinguishing between static and dynamic hydration properties. Next, we discuss simulation and experimental techniques to study ion dehydration under confinement, highlighting critical knowledge gaps that impede our understanding of this phenomenon. We then discuss effects of ion dehydration on the energy landscape of ion transport and analyze attempts in the literature to improve ion selectivity by promoting dehydration of specific ions. We conclude by proposing research directions to enhance our understanding of ion dehydration and fabricate sustainable and robust membranes with ion-specific selectivity. 
    more » « less
  2. Abstract Biofilms are ubiquitous surface-associated bacterial communities embedded in an extracellular matrix. It is commonly assumed that biofilm cells are glued together by the matrix; however, how the specific biochemistry of matrix components affects the cell-matrix interactions and how these interactions vary during biofilm growth remain unclear. Here, we investigate cell-matrix interactions inVibrio cholerae, the causative agent of cholera. We combine genetics, microscopy, simulations, and biochemical analyses to show thatV. choleraecells are not attracted to the main matrix component (Vibriopolysaccharide, VPS), but can be attached to each other and to the VPS network through surface-associated VPS and crosslinks formed by the protein Bap1. Downregulation of VPS production and surface trimming by the polysaccharide lyase RbmB cause surface remodeling as biofilms age, shifting the nature of cell-matrix interactions from attractive to repulsive and facilitating cell dispersal as aggregated groups. Our results shed light on the dynamics of diverse cell-matrix interactions as drivers of biofilm development. 
    more » « less